自然科学版 英文版
自然科学版 英文版
自然科学版 英文版

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(英文版)

Journal of Central South University

Vol. 15    No. 2    April 2008

[PDF Download]    

    

Influence of crystallographic orientation on growth behavior of spherical voids
ZHANG Xin-ming(张新明)1, LIU Wen-hui(刘文辉)1, 2, TANG Jian-guo(唐建国)1, YE Ling-ying(叶凌英)1

1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;2. College of Electromechanical Engineering, Hunan University of Science and Technology,Xiangtan 411201, China

Abstract:The influence of crystallographic orientation on the void growth in FCC crystals was numerically simulated with 3D crystal plasticity finite element by using a 3D unit cell including a spherical void, and the rate-dependent crystal plasticity theory was implemented as a user material subroutine. The results of the simulations show that crystallographic orientation has significant influence on the growth behavior of the void. Different active slip systems of the regions around the void cause the discontinuity in lattice rotation around the void, and the corner-like region is formed. In the case of the void located at grain boundary, large heterogeneous deformation occurs between the two grains, and the equivalent plastic deformation along grain boundary near the void in the case of θ=45˚ (θ is the angle between grain boundary direction and X-axis) is larger than the others. Large difference of orientation factor of the two grains leads to large equivalent plastic deformation along grain boundary, and the unit cell is more likely to fail by intergranular fracture.

 

Key words: crystallographic orientation; void growth; crystal plasticity; user subroutine; finite element method

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号