自然科学版 英文版
自然科学版 英文版
自然科学版 英文版

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(英文版)

Journal of Central South University

Vol. 27    No. 9    September 2020

[PDF Download]    [Flash Online]

    

Springback prediction of TC4 titanium alloy V-bending under hot stamping condition
YANG Xiao-ming(杨晓明)1, DANG Li-ming(党利明)1, WANG Yao-qi(王耀琦)2, ZHOU Jing(周靖)1, 3, WANG Bao-yu(王宝雨)1, 3

1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2. Metal Forming Technology Department, AVIC Manufacturing Technology Institute,
Beijing 100024, China;
3. Beijing Key Laboratory of Metal Lightweight Forming Manufacturing, Beijing 100083, China

Abstract:In this paper, the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis. Firstly, an analytical model was established to predict the V-shaped springback angle Δα under the stretch-bending conditions. The model took into account of blank holder force, friction, property of the material, thickness of the sheet and the neutral layer shift. Then, the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool. In the hot stamping tests, the titanium alloy sheet fractured seriously at room temperature. The titanium alloy has good formability when the initial temperature of the sheet is 750–900 °C. However, the springback angle of formed parts is large and decreases with increasing temperature. The springback angle Δα decreased by 50% from 0.5° to 0.25°, and the angle Δβ decreased by 46.7% from 1.5° to 0.8° when the initial temperature of sheet increased from 750 °C to 900°C. The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius, because of the increase of elastic recovery, the complex distribution of stress, the length of forming region and the decreasing degree of stress. Compared with the simulation results, the analytical model can better predict the springback angle Δα.

 

Key words: titanium alloy; hot stamping; springback; FE modelling; analytical model

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号