自然科学版 英文版
自然科学版 英文版
自然科学版 英文版

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(英文版)

Journal of Central South University

Vol. 27    No. 9    September 2020

[PDF Download]    [Flash Online]

    

Improving performance of open-pit mine production scheduling problem under grade uncertainty by hybrid algorithms
Kamyar TOLOUEI1, Ehsan MOOSAVI1, Amir Hossein BANGIAN TABRIZI1, Peyman AFZAL1, Abbas AGHAJANI BAZZAZI2

1. Department of Petroleum and Mining Engineering, South Tehran Branch, Islamic Azad University,Tehran, Iran;
2. Department of Mining Engineering, University of Kashan, Kashan, Iran

Abstract:One of the surface mining methods is open-pit mining, by which a pit is dug to extract ore or waste downwards from the earth’s surface. In the mining industry, one of the most significant difficulties is long-term production scheduling (LTPS) of the open-pit mines. Deterministic and uncertainty-based approaches are identified as the main strategies, which have been widely used to cope with this problem. Within the last few years, many researchers have highly considered a new computational type, which is less costly, i.e., meta-heuristic methods, so as to solve the mine design and production scheduling problem. Although the optimality of the final solution cannot be guaranteed, they are able to produce sufficiently good solutions with relatively less computational costs. In the present paper, two hybrid models between augmented Lagrangian relaxation (ALR) and a particle swarm optimization (PSO) and ALR and bat algorithm (BA) are suggested so that the LTPS problem is solved under the condition of grade uncertainty. It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence. Moreover, the Lagrangian coefficients are updated by using PSO and BA. The presented models have been compared with the outcomes of the ALR-genetic algorithm, the ALR-traditional sub-gradient method, and the conventional method without using the Lagrangian approach. The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution. Hence, it is more effectual than the conventional method. Furthermore, the time and cost of computation are diminished by the proposed hybrid strategies. The CPU time using the ALR-BA method is about 7.4% higher than the ALR-PSO approach.

 

Key words: open-pit mine; long-term production scheduling; grade uncertainty; augmented Lagrangian relaxation; particle swarm optimization algorithm; bat algorithm

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号